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Abstract. It is demonstrated using three-dimensional camputer simulations that some simple 
non-interacting electron models that include electron scattering by grain boundaries exhibit 
coexistence of large persistent currents and small conductances, similar to that observed 
experimentally in isolated micrometre-sale gold rings. Models with simple grain boundaries, 
and models with small numbers of regularly stepped or atomically mugh dilute grain boundaries, 
have been studied and found to yield similar results. which differ mzfkedly, however, from the 
predictions of models that assume only random impurity sanering. This difference is due 
to the fact that equilibrium persistent currents and non-equilibrium transport coefficients a x  
physically different things and depend in different ways on the topology of the defect structure 
in a conducting ring. Experiments on metal and semiconductor rings that should be able to 
determine whether this is the explanation of the effects observed by Chandrasekhar~ el a1 are 
pmposed. 

1. Introduction 

When a conductor in its ground state is immersed in a magnetic field, it acquires a magnetic 
moment and an associated circulating electric current. This current, being an equilibrium 
property, does not dissipate. It is thus referred to as a ‘persistent current’. The basic 
theory of persistent currents in normal metal rings was formulated by London [l] in the 
1930s in the context of aromatic molecules. It was developed further by several authors 
in the 1960s [2-7]. More recently, Biittiker et al [8]~showed that these currents should 
occur even in the presence of disorder. Cheung et al 191 then estimated the magnitude 
of the persistent currents that should flow in small, disordered normal metal rings with 
non-interacting electrons. They predicted that, at low temperatures, the typical persistent 
current should be I,, - Iol/L where Io = evF/L, e is the electron charge, L is the ring’s 
circumference, V F  is the electron Fermi velocity, and 1 is the elastic mean free path. Since 
then, persistent currents have been observed in an array of IO’ micrometre-scale copper 
rings by LBvy et al [IO], and in individual gold and semiconductor rings by Chandrasekhar 
et al ~ [ l l  J and Mailly et a1 [12]. The measurements on the single gold rings 11 11 presented 
a puzzle that has remained unresolved: the measured persistent currents were of order 10 
in rings for which 1/L - 0.01, i.e., the observed currents were hvo orders ofmagnitude 
larger than had been predicted [9] for rings with such small transport mean free paths and 
correspondingly small conductances. 

.During the last three years, there have been several~attempts to explain this observation 
as a novel effect of electron-electron interactions: very large enhancements of the persistent 
current due to many-body effects were predicted in threedimensional rings C13.141 and 
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also in one- and two-dimensional models [15]. However, subsequent more detailed three- 
dimensional calculations [ I6181  yielded no significant many-body enhancement of the 
persistent current. Also exact results of Luttinger liquid theory for defect-free rings [19] as 
well as exact numerical solutions of models of small systems with and without defects [2& 
241 have indicated that electron-electron interactions do not yield any major enhancement of 
the persistent current in one-dimensional rings. A recent theoretical study of two interacting 
electrons in a narrow two-dimensional ring also showed no enhancement of the persistent 
current by electron-electron interactions [Z]. Furthermore, the results of persistent current 
mmurements on two-dimensional, few-channel, quasiballistic semiconductor rings [ 121 
have been in reasonably good agreement with the predictions of the non-interacting electron 
theory [9], so that it seems that there is no large many-body enhancement of the persistent 
current in those systems. It is also important to realize that every geometrical dimension of 
the gold rings in the experiments was very much larger than the electronic screening length, 
and that the plasma frequency of gold greatly exceeds the characteristic energy scales that 
appear in the physics of persistent currents. Thus from the point of view of standard many- 
body theory, one would expect the gold rings to behave as a classic normal metal, and there 
seems to be no clear physical basis for a giant many-body enhancement of the persistent 
current. In view of the above, although the search for a many-body explanation of the 
experiments of Chandrasekhar et al [ 1 11 is far from over [26], it seems reasonable to begin 
considering other possibilities. 

The purpose of this article is to demonstrate that some simple three-dimensional 
models exhibit the combination of large persistent currents and small conductances that 
has been observed experimentally in the gold rings. These models do not introduce 
any unconventional electron-electron interaction effects in order to obtain large persistent 
currents. They are based instead on, well known materials and transport properties of thin 
gold films. 

The previous theoretical work has been on models in which random impurity scattering 
is the mechanism determining the electron elastic mean free pathl, and limiting the size of 
the persistent current. However, the rings of Chandrasekhar et al [I I] were fabricated from 
gold films grown on oxidized silicon, an amorphous substrate. Such films are polycrystalline, 
and experimental studies have shown [27,28] that grain boundary scattering dominates 
the electronic transport properties of thin polycrystalline gold films at low temperatures. 
Random impurity scattering and surface roughness scattering are much less important. It 
will be shown below that certain simple models that include grain boundary scattering 
exhibit the combination of large persistent currents and small conductances that is observed 
experimentally, but is not found in the random defect models. The large difference between 
the results obtained from the grain boundary and random impurity models is due to the fact 
that the persistent current and conductance of a ring are p h y ~ i ~ d l y  different quantities and 
depend in different ways on the topology of the defect structure in the ring. 

It should be stressed that the puzzle presented by the experiments of Chandrasekhar er 
al [ 111 involves not only the persistent current but also the conductance of the ring, and 
that both of these quantities must be calculated on the same footing if the experimental 
results are to be explained convincingly. However, most of the previous theoretical studies 
have been devoted to the question of whether a many-body enhancement of the persistent 
current is possible; much less attention has been given to calculating the conductance. In 
the present work both the persistent cumnt and the conductance are calculated numerically, 
and both calculations represent exact solutions of the models considered. The reason why 
the grain boundary scattering models with non-interacting electrons that are discussed in 
this work exhibit large persistent currents together with small conductances, while random 



Large persistent currents in small gold rings 2023 

defect models do not, is due as much to the different behaviour of the conductance as to 
the different behaviour~of the persistent current in the two classes of model. 

Grain boundary scattering is the dominant scattering mechanism at low temperatures in 
thin films of gold [27,28] and some other metals [28]. It therefore needs to be considered 
in any quantitative explanation of the experiments of Chandrasekhar et al [ I  I]. Although, 
as is shown in this article, grain boundary scattering offers a possible explanation of the 
experiments of Chandrasekhar eta1 [I 11, whether this will in the end turn out to be the whole 
story is an open question. The reason is that the gold rings in question have gain boundaries 
that are widely separated on the atomic scale and this ‘diluteness’ of the grain boundaries 
is very important. Three-dimensional metal rings with large numbers of widely spaced 
grain boundaries are difficult to simulate numerically because of the practical limitations of 
computers. Ab initio calculations of the electronic structure of such systems are at present 
out of the question. Thus the present study has been limited to very simple models with 
separable Hamiltonians describing rings with arbitrary numbers of grain boundaries, and 
to more realistic (but still simple) non-separable model Hamiltonians describing rings with 
small numbers of dilute grain boundaries. Some important unresolved issues are how many 
grain boundaries the rings of Chandrasekhar et al [I 11 actually contained, and if this number 
was large, whether the present results can be applied to that case. It seems probable that 
these and many other questions will need to be resolved experimentally, and several good 
experimental tests of the present explanation of the observations of Chandrasekhar et al 
[ 1 I] are suggested at the end of this paper. 

It should be noted that the present paper addresses the problem of the typical persistent 
current in a single metal ring, the quantity measured experimentally by Chandrasekhar et 
a1 [ll].  The problem of the average ring persistent current over a large array of rings 
that was measured by E v y  et a f  [IO], although closely related, is significantly different. 
This is because the persistent currents carried by different rings in the array can differ in 
sign, which results in strong cancellations in the average. The theories of the average ring 
persistent current in large arrays of rings that have been developed to date [29,14] have 
assumed that the electrons are scattered only by random impurities. In view of the results 
for single rings that are presented in this article, theoretical studies of arrays of rings based 
on models with grain boundaries would clearly be of interest, but are beyond the scope of 
the present paper. 

2. Grain boundary models and the method of solution 

Consider a thin, multichannel ring threaded by a magnetic flux, described by a Hamiltonian 
[301 

p t .  Y t  H = - <$%Ia~k/a j+ lk I  + t jk /a jkp)k+l /  + tjuajklajki+i + HC 
1.k.l 

where 1‘ =. exp(2xi@pIZ); @ is the magnetic flux threading the ring in units of the flux 
quantum hle .  Z is the circumference of the ring in units of the lattice parameter. a:kl is 
the electron creation operator at site j k l ;  the spin index is suppressed. The first term in H 
represents electron hopping in the azimuthal direction around the ring: the other two terms 
describe hopping in the two orthogonal directions (see the left inset of figure 1, for the 
hopping directions a, ,9 and y) .  For a defect-free ring, the hopping coefficients t& in H 
are all taken to be equal, fjk( = to. Grain boundaries are modelled by setting those that 
represent hopping across a grain boundary equal to tgb. with t,b < to. 
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This is clearly a greatly simplified model of a metal ring with grain boundaries. 
However, it allows one to examine for the first time the effect on the persistent current 
of extended defects that cross the ring and partition it into ‘grains’, as opposed to random 
impurities, which do not. This topological difference between random impurity and grain 
boundary models is crucial, as will be shown below. Another important advantage of this 
model is that it can be solved numerically for both the persistent current and the conductance 
without making approximations. Thus all of the numerical results presented in this paper 
constitute exact solutions of the model. 

The persistent current I was evaluated at zero temperature by finding the eigenvalues 
of H numerically, and using the result 121 

where E is total electronic ground state energy of the ring. 
In addition to the persistent current, it is essential to calculate the resistance R of the 

ring, since the value of the key experimental parameter l / L  was determined from resistance 
measurements. For definiteness, let R be the resistance (in the absence of magnetic fields) 
of the wire made by severing the ring; the length of the wire is equal to the circumference 
L of the ring. In this work the resistance R is evaluated from the Landauer conductance 
formula 

G = 2e2T/h 

where R = I j G  and T =Tr(d)  is the total multichannel transmission probability through 
the wire at the Fermi energy [31-34]. On the other hand, in terms of the effective mean 
free energy path, the conductance is 

G = 8qe21/(3hL) 

where i j  is the number of conducting channels at the Fermi energy. Comparing these 
expressions for the conductance yields 1/L = 3T/4q. Thus, in the present work 

will represent the quantity I jL ,  which was inferred experimentally [ l l ]  from measured 
resistances. The parameter Tlij that appears in A has a simple physical meaning: it 
is the probability that an electron at Fermi energy is msmitted right through the wire 
made by severing the ring. In this formulation, the puzzle raised by the experiments of 
Chandrasekhar et a1 I l l ]  and to he addressed here is why goId rings with low electron 
transmission probabilities (values of A - 0.01) are observed to display large persistent 
currents, of order IO. 

In this work, T / q ,  and hence A, were calculated numerically by solving the Lippmann- 
Schwinger equation for the wire using a straightforward generalization to three dimensions 
of the method of Nonoyama et a1 [35]. 

The persistent current I is periodic in the flux threading the ring, fluctuates as the number 
of electrons in the ring is varied, and depends on the precise configuration of the defects [2- 
91. All of this must be considered when specifying what is meant by the ‘typical’ persistent 
current Ityp. The persistent current may be written as a Fourier series in the magnetic flux: 

m 
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In  the present work, ZI, the first Fourier coefficient, was calculated at zero temperature 
as a function of the number of electrons present in the ring. Its root mean square value 
1 ~ ~ s  = JZ?) was evaluated, the average (. . .) taken over all electron populations ranging 
from f to one electron per site [36]. l w s  was then averaged over configurations of grain 
boundaries. This configuration average will be referred to as ZtW, since it is a typical value 
of the persistent current in an isolated ring. Since A also fluctuates with the Fermi energy 
and defect configuration, A,, ‘the average of A over grain boundary configurations and 
Fermi energy was calculated. For consistency with the above definition of Z,yp, the range of 
Fermi energies over which A was averaged-was [-1.73b,O]; this corresponds to electron 
populations ranging from 1 to one electron per site of Hamiltonian H, for a bulk system. 

3. Results for separable Hamiltonians: simple grain boundaries 

Let us consider, to start with, rings with only ‘radial’ grain boundaries (see the left inset 
of figure 1). In the Hamiltonian H, this means that for certain values of j (those at grain 
boundaries) rpX, = tgb for all k and I ,  while all other Gk, are equal to & [37]. Thus H is 
separable. (Similar results were obtained for non-separable Hamiltonians (for rings with 
small numbers of dilute grain boundaries running in arbitrary directions with steps on the 
atomic scale, and for rings with small numbers of atomically rough grain boundaries) and 
will be discussed in section 4.) The rings simulated had square wire cross-sections of N x N 
sites (see the left inset of figure l), and aspect ratios M z Z / N ,  for a ring circumference 
of Z sites. 

In typical thin~gold films the grain size is roughly equal to the thickness of the film 
[27,28], which would imply that the number of grain boundaries in the ring is roughly equal 
to M, the aspect ratio. However the grain size can be larger for some substrates and/or after 
heat treatment [27]. The number of grain boundaries in the gold rings of Chandrasekhar et 
a1 [ l l ]  was not known accurately, but may have been significantly smaller than M [38]. 
However, in the absence of more detailed information, it, seems reasonable to examine 
closely models where the number of grain boundaries is equal to M, choosing the grain 
boundary strength parameter tgb/& in such a way as to make the transmission probability 
A,, of the~ring approximate the experimental value, A, - 0.01. This choice means that in a 
ring with more grain boundaries, the reflection probability at each individual grain boundary 
is set to be weaker than in a ring with fewer grain boundaries so that the total transmission 
probability of an electron around the ring is approximately the same. 

This is the case considered in figure 1, where the symbols 0, U, and A show ZtyP/Zo [39] 
and A, as a function of the wire cross-section N, computed for three choices of the aspect 
ratio M ,  for radial grain boundaries. In each case the number of grain boundaries in the 
ring is equal to M .  The configuration averages were computed assuming grain boundaries 
randomly distributed around the ring. In each case, the value of tgb was chosen so that 
A, - 0.01 = 0.066, 0.210, and 0.485 for M = 1, 4, and 16, respectively); see the 
lower right inset of figure 1 for the precise values of A, computed for these values of the 
grain boundary parameters. The straight lines  in figure 1 are guides to the eye. 

Notice that for N - 30, Zwp - 10 even though 1, - 0.01. This demonstrates that 
a model with non-interacting electrons can exhibit a large persistent current - ZO despite 
the presence of a scattering that results in a short transport mean free path 1 - 0.01L 
and correspondingly small conductance for the ring. Note also that in figure I ,  for fixed 
M, ZtS/Zo increases linearly with N (there are small fluctuations about the straight line 
behaviour), while A, slowly decreases. This behaviour is in marked contrast with the case 
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0 
H 
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H 

N 
Fwre 1. Normalized persistent current I,yp/lo and avenge transmission A, against N, for 
radial grain boundaries. are shown as 0, 0, and A for ring aspect ratios M = I ,  4, and 16 
respectively. The number of grain boundaries is M. Straight lines are guides to the eye. + 
symbols show results for ah ntomically rough grain boundary, for M = 2 and Igb/lo = 0.047. 
Left inset. schematic diagram of a ring with four radial grain boundaries (shaded). 

of random impurity scattering where Ityp~ is predicted [9] to be two orders of magnitude 
smaller (Ilyp/Io - A) for the same velde of the conductance, and Iryp/Io is predicted to be 
independent of N .  

In figure 1, Ityp/Io also increases when the aspect ratio M (and number of grain 
boundaries) increases at fixed L, but the change of Ityp from M = 4 to M = 16 is small. 
The fact that Ityp/Io increases somewhat when the number of grain boundaries increases is 
not unreasonable since the scattering strength of the individual grain boundaries decreases 
so as to keep the transmission probability A, of the whole ring approximately fixed. 

Since q. the number of transverse modes of the ring, is proportional to NZ, the linear 
dependence of Iryp/Io on N in figure 1 resembles the result IlYp - IoJii predicted [9] for 
ballistic (defect-free) rings. However here Itp << I0.Jii. Also, unlike the ballistic case, 
here one must vary not just N (which controls q)  but also the circumference Z (keeping 
M = Z / N  constant) to see linear behaviour. This is shown in figure 2, where &/Io is 
plotted for rings with four radial grain boundaries (rgb/fo = 0.210). for M = 4 and 16, 
and also for fixed Z = 12. Increasing N (and q)  at fixed Z results in slower growth of 
Ityp/Io than the linear behaviour seen for fixed M = 4 and 16. Thus the channel counting 
arguments that yield the Jii scaling of Ityp/Io in ballistic rings are not adequate for rings 
with grain boundaries. For the latter, the aspect ratio M is also significant: the behaviour 
of Ifyp/Io at very small values of M (where the concentration of grain boundaries in  the 
ring is relatively high) is different from what it is at high M where the grain boundaries 
are more dilute. Notice also that Ityp/Io changes little from four to 16 in figure 2, or when 
the number of grain boundaries changes from four to 16 at fixed A, for M = 16 (compare 
figure 1 and figure 2). 

It is of interest also to consider separately the dependence of the persistent current on 
the aspect ratio of the ring and on the number of grain boundaries. This is addressed in 
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Figure 2. iwp/io against N for four radial grain boundaries. 0, + and + m results for 
fixed aspea mtios M = 4 and 16, and a fixed circumference Z = 12, respectively. Inset. 
lcw/lo against N for four radial grain boundaries with I ~ ~ / I O  = 0.210 and a fixed aspect ratio 
M = 1. Note the~breakdown oflinwity of l,p/lo with N at low N where the grain boundaries 
themselves constitute a significant fmction of the material of the ring. 

figure 3 and figure 4. Figure 3 shows examples of the dependence of Itp/pllo on the aspect 
ratio M for a fixed wire cross-section N = 20 and for fixed numbers of p i n  boundaries. 
The results for four grain boundaries with tgb/fo = 0.210 and for 16 grain boundaries 
with tgb/iO = 0.485 are shown. (These grain boundary ‘strengths’ are the same as for the 
M = 4 and M = 16 results shown in figure 1, respectively.) For small values of M, the 
dependence of Ityp f l o  on the aspect ratio M is non-monotonic and qualitatively different in 
the two cases shown, but at larger values of M, I t y p / I ,  becomes almost independent of M, 
in agreement with the results shown in figure 2. The fact that the behaviour seen for very 
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low values of M. in figure 3 is anomalous should not be surprising since there the grain 
boundaries themselves constitute a large fraction of the material of the ring and grossly alter 
its electronic structure. 

10 

1 
D 

Y -. 
a, x + 

Y 

0.1 

0.01 

0 5 10 15 20 25 30 
Number of grain boundaries 

Figure 4. 0. A, and show ItypJfi) against the number of radial gnin boundaries for a fixed 
aspect ratio M = 4 and wire cross-section N = 20. for tzbJto = 0.800, 0.485. and 0.210 
respectively. 0 also show Ityp/h for N = 20 and tzbJto = 0.210 (as for the results denoted B), 
but with the aspect ratio M set equal to the number of grain boundaries. so that the mncentratir,n 
of gnin boundaries in the ring is kept fixed. The straight lines axe guides to the eye. 

In figure 4, 0,  A, and show &,/Io as function of the number of grain boundaries 
for a fixed aspect ratio M = 4 and wire cross-section N = 20, for tgb/fO = 0.800, 0.485, 
and 0.210 respectively. Notice that here in each case the strength of the individual grain 
boundaries is not changed as the number of grain boundaries in the ring increases (in contrast 
to figure 1). In figure 4, for small numbers of grain boundaries, the persistent current begins 
to decrease exponentially with increasing number of grain boundaries. As the number of 
grain boundaries continues to increase and the grain boundaries cease to be dilute, ItyP/Io 
begins to deviate from the exponential behaviour. This deviation is strongest for the more 
strongly scattering grain boundaries. For weak scattering the exponential behaviour persists 
to significantly higher numbers of grain boundaries in the ring. That the breakdown of 
the exponential behaviour is principally an effect of the increasing concentration of grain 
boundaries in the ring can be seen by considering the results denoted by 0 in figure 4. These 
again show ItyP/Io for N = 20 and tgb/fO = 0.210 (as for the results denoted m), but in this 
case M is not fixed but set equal to the number of grain boundaries, so that the concentration 
and srrength of  the grain boundaries in the ring are both kept fixed when the number of 
grain boundaries increases, i.e. here the number of grain boundaries is proportional to the 
circumference of the ring. In this case it can be seen that the dependence of ltyp/lo on the 
number of grain boundaries is closer to exponential when the number of boundaries (and 
the ring circumference) are large. 

If the number of grain boundaries in the ring exceeds the aspect ratio M, the linear 
dependence of Iryp/Io on N at constant M that is seen in figure 1 breaks down for small ,V. 
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This is illustrated in the inset of figure 2 where ItyP/Io is plotted against N for four radial 
grain boundaries with t8b / to  =0.210 and a fixed aspect ratio M = I .  The breakdown of 
the linear behaviour at low N occurs because if the aspect ratio and the number of grain 
boundaries are both kept fixed, the grain boundaries themselves take up an increasingly 
large fraction of the material of the ring as N decreases. As has already been seen for 
low aspect ratios M in figure 3, this changes the underlying electronic structure of the 
ring very strongly and modifies the behaviour of the persistent current. Clearly the gold 
rings of Chandrasekhar et a1 [l l] ,  where the grain boundaries most likely comprise less 
than 0.1% of the material of the ring, are in a dilute regime where this effect does not 
occur. However, it becomes a major concern when modelling rings with non-separable 
Hamiltonians, since only quite small systems of this type can be simulated numerically, 
which severely limits the number of grain boundaries in rings that can be modelled if the 
grain boundary concenmtion is to be kept low. 

4. Results for non-separable Hamiltonians 

The above results a n  for Hamiltonians with radial grain boundaries. It is necessary to 
establish whether they also apply to systems with grain boundaries running in arbitrary 
directions. The Hamiltonians of such systems are non-separable, and their numerical study is 
much more difficult, requiring the use of Lanczos algorithms [40] to calculate the electronic 
energy spectra. Some representative results are given in figure 5. Here, for the results 
denoted and 0, the number of grain boundaries is equal to the aspect ratio M, as in 
figure I ,  and tgb / to  is chosen so that A, - 0.01. The grain boundaries considered are 
planes slicing all the way through the ring, as is illustrated in the right inset of figure 5. 
Planar grain boundaries are realistic, being favoured by free energy considerations during 
sample preparation, but in the simulations the 'planes' were in fact stepped interfaces on the 
atomic scale of the lattice Hamiltonian H; Configuration averaging was performed over the 
possible orientations of such grain boundaries, but excluding boundaries parallel to the p or 
y (or both the p and y )  hopping directions in the Hamiltonian; This exclusion ensured that 
averaging was only over~non-separable Hamiltonians. These results in figure 5 are similar 
to those in figure 1: ,bv slowly decreases with increasing N .  Ityp/Io increases linearly with 
N for one grain boundary with M =-1  (0). For two grain boundaries with M = 2 (0). 
the behaviour is also consistent with~linear growth of~Zryp/ZO with N ,  but the fluctuations 
are larger, and the accessible values of N smaller. (The fluctuations are a finite-size effect; 
they do not disappear when more grain boundary configurations are included in the average 
Ityp.)  These results indicate that the behaviour described above for radial grain boundaries 
is not specific to sepafable Hamiltonians. The most obvious difference between the above 
results for the systems with radial and non-radial grain boundaries is that in the latter case 
I,yp is smaller by 'a factor of about two for the same value of Aav. 

A feature of the results for two grain boundaries in the M = 2 structure that are denoted 
0 in figure 5 is that at low N where the concentration of grain boundaries in the crystal 
is highest, Iryp/Io is almost independent of N (for N < 6). A similar but less pronounced 
tendency for Ztyp/Io to level out at low N can~also be discerned in the results for the 
M = 1 structure with one grain boundary. If the grain boundaries in the ring are made 
more concentrated, ibis tendency of &/Io to level out at low N becomes stronger. This is 
illustrated by the~results denoted + in figure 5, which show Itp/Zo for two grain boundaries 
in an aspect ratio M = l~structure, with t g b / t O  = 0.076. Here &/Io is almost independent 
of N for N < 15, and then shows an increase, but is not clear whether the linear growth of 
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Figure 5. l,yp/l~, and A., against N, for non-radial grain boundaries. 0 and 0 are results with 
the number of grain boundaries equal to the aspect ratio M. for aspect ratios M = I and 2 
and 1,blro = 0 . W  and 0.075 respectively. The results denoted + show I t yp / lo  for two grain 
boundaries in an aspect ratio M = I slrucfure, with t,a/lo = 0.076. Ermr bars are the statistical 
uncenainty due to averaging over finite numbers of grain bounday configurations. Straight lines 
are guides 10 the eye. Right inset, a schematic diagram of WO non-radial grain boundaries. 

I t y p / I o  with N is recovered at large N or not, because of the fluctuations that I , y p l I o  shows 
as a function of N and because of the limited range of N that is accessible numerically. 

Notice that the breakdown of the linearity of I t y p l I ~  with N over the wide range of 
N seen for the two-grain-boundary M = 1 system (+) does not occur in the two-grain- 
boundary M = 2 system (0) or the one-grain-boundary M = 1 system (0).  Thus neither 
the number of grain boundaries alone nor the value of M alone controls this effect. An 
important factor appears to be the grain boundary concentration. These results (like those 
presented in figure 2. figure 3, and figure 4, and the discussion at the end of section 3) 
demonstrate the importance of simulating systems in which the grain boundaries are dilute, 
as they are in the real gold rings. However, for models with larger values of the aspect 
ratio M, the numerically accessible range of N shrinks very rapidly. This, together with 
the fluctuations that It,lIo shows as a function of N, makes it very difficult to establish 
how & , / I o  scales with N for large numbers of dilute non-radial grain boundaries. 

Although the grain boundaries discussed above correspond to non-separable Hamiltoni- 
ans, are stepped on the atomic scale, and are randomly located and oriented in the ring, each 
of them has a perfectly regular microscopic structure (except where two grain boundaries 
cross). Recent high-resolution electron microscopy studies [41] have yielded very detailed 
and clear images of grain boundaries in gold that are perfectly ordered on the atomic scale. 
However, earlier work [42] indicated some grain boundaries in gold to he very well or- 
dered, but others to exhibit some atomic scale disorder in a region along the grain boundary 
a few atoms thick. Since the microstructure of the grain boundaries of the gold rings of 
Chandrasekhar ef al [ 111 was not measured, it is unclear which type of grain boundary was 
more typical, and it is of interest to simulate atomically rough grain boundaries as well. 
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The results of simulations for a model of a ring with an atomically rough grain bound,ary 
are shown by the + symbols in figure 1 for M .= 2. This grain boundary contains a. central 
layer identical to one of the radial grain boundaries described in section 3, but surrounded by 
two disordered layers. The disordered layers are constructed by making 50% of the hopping 
matrix elements in the CY direction. (at randomly chosen sites) in the lattice layers adjacent 
to that of the central layer~also weak and equal to tgb.  The results for this Hamiltonian are 
again similar to those for the simple radial grain boundaries shown in figure 1. The effect 
on the (configuration-averaged RMS) persistent current of roughening the grain boundary in 
this way is similar to that of tilting the grain boundary, i.e., making it non-radial. 

5. A comparison of grain boundary and random defect models 

Why do these grain boundary models yield the combination of large persistent currents 
and small conductances that is observed experimentally, while random defect models do 
not? This is addressed in figure 6. Here Z,yp/Io and h, are results for M = 1 (one radial 
grain boundary) taken from figure 1. Z, and A, are the persistent current and transmission 
defined in the same way as Z,, and A,, but with the same ‘defects’ (terms in H for which 
tp, = fgb) scattered randomly through the system instead of forming a continuous grain . 
boundary. The striking feature is that while ha, is smaller than 1, by a factor of about 40, 
Ztyp is smaller than Z, by only a factor of about two. That is, collecting the random defects 
into a coherent grain boundary forming a barrier extending all the way across the path of 
the current, reduced the transmission A (and the conductance of the ring) far more than it 
did the persistent current. 

0.0- h 
4 6 8 . 10 av 

SI 
Figure 6. A comparison of random defect and gnin boundary models (see the text). 

This clarifies why large persistent currents occur for low conductances in the grain 
boundary model, but not in random defect models. The physics underlying this numerical 
example is that the mean free path is_a transport property, while the persistent current is 
an equilibrium effect. The persistent current is given by the flux derivative of the total 
electronic energy of the ring [Z]. The total energy (and hence the persistent current) is 
not very sensitive to the arrangement of the defects, and is not disturbed much if defects 
form into a grain boundary, i.e., a continuous ‘barrier’ across the ring, but transport (the 
conductance of A.) is well known to be greatly affected by such a barrier. Analogous (and 
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more extreme) differences between the behaviour of transport coefficients and equilibrium 
quantities are commonly associated with percolation phenomena, where the topology of the 
sample is crucial. 

This physical argument suggests that the present results should not be very sensitive to 
the shape of the grain boundary, so long as it forms a continuous barrier across the ring. 
For example, as has been shown above for a ring with one grain boundary, making the 
grain boundary rough on the atomic scale does not change the predictions of the model 
qualitatively. 

It should be stressed that it is the conductance rather than the persistent current that is 
sensitive to the arrangement of defects in figure 6. Thus the present work suggests that the 
explanation of the experiments of Chandrasekhar etal [ll] has at least as much to do with 
the behaviour of the conductance of the ring as with that of the persistent current, and that 
the conductance aspect of the problem deserves much more attention than it has received 
in previous theoretical studies. 

It is also clear from the above discussion of figure 6 that, in order to achieve a low 
electron transmission probability (A - 0.01). the random impurity model requires a much 
larger number of atomic defects to be present in the ring than is required in the grain 
boundary model (if the individual atomic defects are similar). This in turn depresses 
the value of the persistent current that the random impurity model predicts for a given 
conductance. Since the resistance of gold films is mainly due to scattering by grain 
boundaries [27,28], the high concentration of defects that is required by random impurity 
models in order to obtain low conductances is a deficiency of those models. That is, the 
random defect models assume the gold rings to be much ‘dirtier’ than they really are. For 
example, computer simulations of persistent currents in rings with random impurities have 
traditionally employed Anderson models, in which every site is an impurity site and the 
spread of random site energies W is not very much smaller than the tight-binding energy 
band parameter IO. 

6. Comparison with experiment 

The amplitudes of the persistent currents measured by Chandrasekhar et al [I 11 ranged in 
magnitude from 0.310 to 2.010 over the three rings for which results were reported. For these 
rings, N - 300, so that the largest wire cross-sections N considered in figure 1 and figure 5 
are about an order of magnitude smaller than in the experiments. The aspect ratios of the 
experimental rings were in the range M - 100-200. The numbers of grain boundaries in the 
rings were unknown, but the transmission probabilities of the rings could be estimated from 
the known conductances of similar samples to yield h * 0.01. as discussed in section 2. If 
one assumes that the rings contain any given number of grain boundaries, one can choose 
the grain boundary model parameter tsb/t0 in such a way that the electron transmission 
probability of the model ring matches that in the experiments, and this was done in the 
calculations presented in figure 1 and figure 5. 

One can extrapolate the results of the simulations reported in section 3 for rings with 
radial grain boundaries to systems with the experimental values of N and M ,  by using the 
linearity of Iwp/Io with N demonstrated in figure 1 and the fact that, for fixed N and fixed 
numbers of grain boundaries, I , , p / I ~  is independent of M at large M, as shown in figure 3. 
This yields I,yp - lOI0 for rings with the experimental dimensions, if the rings contain 
four or 16 grain boundaries and the ring conductance matches experiment, i.e. A - 0.01. It 
should be noted that in the models with radial grain boundaries, for large numbers of grain 
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boundaries and large M, ~Ztfl/Zo is insensitive to both M and the number of grain boundaries 
i f n  is heldfied.  Thus the prediction Ztm - lOlo for the radial grain boundary models is 
insensitive to the number of gain boundaries that one assumes the ring to contain, if the 
ring's N ,  M ,  and conductance are required to match their experimental values. 

For non-radial grain boundaries, one can extrapolate the linear behaviour of the results 
seen in figure 5 for M = 1 structures with one grain boundary, and for M = 2 structures 
with two grain boundaries, to the experimental value of N ,  while holding M f i e d .  This 
yields It- - 310 if N and the conductance of the ring take the experimental values. For two 
grain boundaries, the results of figure 5 show that I t y p / Z ~  increases when M increases from 
one to two. Thus it is not unreasonable to expect rings with one.'or two non-radial grain 
boundaries, and having the experimental values of N ,  M ,  and the conductance, to exhibit 
large values of the persistent current Ityp 2 3 6  that are quite similar to those observed 
by Chandrasekhar et U /  [ I l l .  However, as discussed in section 4, for large numbers of 
non-radial gain boundaries the important dilute regime (of large N nnd M) is not readily 
accessible to numerical investigation; a definitive treatment of this regime is beyond the 
scope of the present work. 

It  should^ also be emphasized that both the separable and non-separable Hamiltonians 
considered in this article represent very simple models of grain boundaries. Complete ab 
initio ,calculations of more realistic grain boundary structures, of the associated electronic 
eigenstates, and of the persistent currents and transport in rings containing them would 
clearly be of interest. 

To summarize: there is good experimental evidence that grain boundary scattering 
is the dominant electronic scattering mechanism in thin gold films [27,28]. The present 
simulations have demonstrated that exact solutions of some simple models that include 
grain boundary scattering exhibit the combination of large persistent currents and small 
conductances that is observed experimentally in gold~rings [l I], but cannot be explained 
by random impurity models with non-interacting electrons. The random impurity models 
yield persistent currents that are too small by factors of 30-150 [Ill.  However, it is unclear 
how many grain boundaries the gold rings of Chandrasekhar el d [ I l l  actually contained, 
and whether more realistic models or models with many non-radial grain boundaries can 
account  for the experimental data as well as the simple models discussed above do is yet 
to be determined. 

7. Proposed experimental tests 

It is clear that direct experimental tests of the predictions of the grain boundary scattering 
explanation of the persistent current measurements of Chandrasekhar et a/ [ll] are needed, 
and some are suggested below. 

(i) The experimental data reported by Chandrasekhar et a1 [ I l l  exhibited a sample to 
sample variation of the size of the observed persistent current (Z/Zo) by a factor of about 
seven, over the three samples. This is consistent with the idea that scattering by grain 
boundaries (whose number varies randomly from sample to sample) controls the magnitude 
of the persistent current (see, for example, figure 4). However, similar variations in the 
magnitude of the persistent current are also found to occur in simulations if the number of 
grain boundaries is kept flxed but their configuration changes. (Recall that the numerical 
values of Zty, presented in this paper are grain boundary configuration averages of RMS 
values, as defined in section 2.) It would be of interest to establish experimentally whether 
there is a correlation between the magnitude of the persistent current and the number of 
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grain boundaries that the sample contains, by performing persistent current measurements 
followed by spatially resolved electron diffraction measurements on a series of samples, but 
in such a study it would be important to bear in mind the sensitivity of the persistent current 
to the de t a iko f  the grain boundary configuration; comparisons between a small number 
of samples with similar numbers of grain boundaries would not be significant. It would 
also be very desirable to measure the conductances of the same samples directly instead of 
relying on conductance measurements on similar samples, as has.been done in the past. 

(ii) It should be possible to fabricate single-crysial gold rings that do not contain any 
grain boundaries at all. These should exhibit significantly larger persistent currents, than 
those that have been observed to date. 

(iii) If single-crystal rings of gold alloys can be fabricated, these should exhibit weak 
persistent currents for low conductances, since the random impurity theories [9,16] should 
apply to such systems. 

(iv) Semiconductor rings such as those of Mailly et a1 [I21 do not contain any crystal 
grain boundaries in the conducting region. The quasiballistic rings of this type that have 
been studied to date have shown no evidence of any anomalous behaviour; the magnitudes 
of the persistent currents observed in them are consistent with the predictions of standard, 
non-interacting electron theories, which for this case predict that Ityp - Io since the number 
of channels is small and 1 2 L. By introducing impurities directly into the region occupied 
by the conducting electrons it should be possible to fabricate diffusive semiconductor rings 
for which 1 << L but which are still free from grain boundaries. It would be very interesting 
to establish whether or not large persistent currents - 10 occur in such samples. However, 
it .is necessary to measure both the persistent currents and conductances of such samples 
for this test to be meaningful. It should also be stressed that a truly diffusive system, 
preferably with point-defect-type scatterers, is required for this test to be convincing-using 
charged random impurities with long-range interactions can result in a few electronic modes 
following a preferred path through the ring and thus yield misleading results. 

(v) Although the semiconductor rings are free from grain boundaries, it is possible to 
impose an electrostatic potential barrier (the analogue of a grain boundary) across such 
a ring by means of a gate. In such a system it should be possible to measure both the 
transmission probability of electrons through the barrier and the persistent current in the 
ring. It is predicted [43] that in the regime of quantum tunnelling, with the Fermi energy 
electrons just below the top of the barrier, large persistent currents - IO can coexist with 
small elechon transmission probabilities much less than unity. It would be of interest to 
observe this semiconductor analogue of the large persistent currents that coexist with low 
conductances in small gold rings. 
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